45 research outputs found

    Modeling Concurrency in Parallel Debugging

    Get PDF
    We propose a description language, Data Path Expressions (DPEs), for modeling the behavior of parallel programs. We have designed DPEs as a high-level debugging language, where the debugging paradigm is for the programmer to describe the expected program behavior and for the debugger to compare the actual program behavior during execution to detect program errors. We classify DPEs into five subclasses according to syntactic criteria, and characterize their semantics in terms of a hierarchy of extended Petri Net models. The characterization demonstrates the power of DPEs for modeling (true) concurrency. We also present predecessor automata as a mechanism for implementing the third subclass of DPEs, which expresses bounded parallelism. Predecessor automata extend finite state automata to recognize or generate partial ordering graphs as well as strings, and provide efficient event recognizers for parallel debugging. We briefly describe the application of DPEs race conditions, deadlock and starvation

    The pig X and Y Chromosomes: structure, sequence, and evolution.

    Get PDF
    We have generated an improved assembly and gene annotation of the pig X Chromosome, and a first draft assembly of the pig Y Chromosome, by sequencing BAC and fosmid clones from Duroc animals and incorporating information from optical mapping and fiber-FISH. The X Chromosome carries 1033 annotated genes, 690 of which are protein coding. Gene order closely matches that found in primates (including humans) and carnivores (including cats and dogs), which is inferred to be ancestral. Nevertheless, several protein-coding genes present on the human X Chromosome were absent from the pig, and 38 pig-specific X-chromosomal genes were annotated, 22 of which were olfactory receptors. The pig Y-specific Chromosome sequence generated here comprises 30 megabases (Mb). A 15-Mb subset of this sequence was assembled, revealing two clusters of male-specific low copy number genes, separated by an ampliconic region including the HSFY gene family, which together make up most of the short arm. Both clusters contain palindromes with high sequence identity, presumably maintained by gene conversion. Many of the ancestral X-related genes previously reported in at least one mammalian Y Chromosome are represented either as active genes or partial sequences. This sequencing project has allowed us to identify genes--both single copy and amplified--on the pig Y Chromosome, to compare the pig X and Y Chromosomes for homologous sequences, and thereby to reveal mechanisms underlying pig X and Y Chromosome evolution.This work was funded by BBSRC grant BB/F021372/1. The Flow Cytometry and Cytogenetics Core Facilities at the Wellcome Trust Sanger Institute and Sanger investigators are funded by the Wellcome Trust (grant number WT098051). K.B., D.C.-S., and J.H. acknowledge support from the Wellcome Trust (WT095908), the BBSRC (BB/I025506/1), and the European Molecular Biology Laboratory. The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007–2013) under grant agreement no. 222664 (“Quantomics”).This is the final version of the article. It first appeared from Cold Spring Harbor Laboratory Press via http://dx.doi.org/10.1101/gr.188839.11

    Whole Genome Sequencing and Complete Genetic Analysis Reveals Novel Pathways to Glycopeptide Resistance in Staphylococcus aureus

    Get PDF
    The precise mechanisms leading to the emergence of low-level glycopeptide resistance in Staphylococcus aureus are poorly understood. In this study, we used whole genome deep sequencing to detect differences between two isogenic strains: a parental strain and a stable derivative selected stepwise for survival on 4 µg/ml teicoplanin, but which grows at higher drug concentrations (MIC 8 µg/ml). We uncovered only three single nucleotide changes in the selected strain. Nonsense mutations occurred in stp1, encoding a serine/threonine phosphatase, and in yjbH, encoding a post-transcriptional negative regulator of the redox/thiol stress sensor and global transcriptional regulator, Spx. A missense mutation (G45R) occurred in the histidine kinase sensor of cell wall stress, VraS. Using genetic methods, all single, pairwise combinations, and a fully reconstructed triple mutant were evaluated for their contribution to low-level glycopeptide resistance. We found a synergistic cooperation between dual phospho-signalling systems and a subtle contribution from YjbH, suggesting the activation of oxidative stress defences via Spx. To our knowledge, this is the first genetic demonstration of multiple sensor and stress pathways contributing simultaneously to glycopeptide resistance development. The multifactorial nature of glycopeptide resistance in this strain suggests a complex reprogramming of cell physiology to survive in the face of drug challenge

    Functioning of Coastal River-Dominated Ecosystems and Implications for Oil Spill Response: From Observations to Mechanisms and Models

    Get PDF
    Coastal river-dominated oceans are physically complex, biologically productive, and intimately connected to human socioeconomic activity. The Deepwater Horizon blowout and subsequent advection of oil into coastal waters of the northern Gulf of Mexico (nGOM) highlighted the complex linkages among oceanographic processes within this river-dominated system and knowledge gaps about it that resulted in imprecise information on both oil transport and ecosystem consequences. The interdisciplinary research program implemented through the CONsortium for oil exposure pathways in COastal River-Dominated Ecosystems (CONCORDE) is designed to identify and quantitatively assess key physical, biological, and geochemical processes acting in the nGOM, in order to provide the foundation for implementation of a synthesis model (coupled circulation and biogeochemistry) of the nGOM shelf system that can ultimately aid in prediction of oil spill transport and impacts. CONCORDE field and modeling efforts in 2015–2016 focused on defining the influence of freshwater input from river plumes in the nGOM. In situ observations, combined with field-deployed and simulated drifters, show considerable variability in the spatial extent of freshwater influence that is related to wind direction and strength. Increased primary production and particle abundance (a proxy for secondary production) was observed during the spring when nGOM shelf waters were becoming stratified. Zooplankton and marine snow displayed intense vertical and horizontal patchiness during all seasons, often aggregating near the halocline. Simulations of a neutrally buoyant tracer released offshore of the Mississippi Bight showed surface advection of low tracer concentrations onto the inner shelf under high river discharge, high stratification, and variable wind conditions compared to almost no advection onto the inner shelf under low discharge, negligible stratification, and generally northeasterly winds. The interconnectedness of environmental variables and biological activity indicate that multiple factors can affect the transport of oil and the resulting ecological impacts. The process-oriented understanding provided by CONCORDE is necessary to predict ecosystem-level impacts of oil spills, and these results are applicable to other river-dominated coastal systems worldwide that often support oil extraction activities

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Experiments with a symbolic evaluation system

    No full text
    Symbolic evaluation techniques can be used to determine the cumulative effects of a program's calculations on the branching predicates and output variables in the program. If the evaluation techniques are carefully and selectively applied, they can be used to generate revealing symbolic representations of the computations carried out by the paths in a program, and of the systems of predicates that describe the input data that causes program paths to be executed. A symbolic evaluation system called DISSECT is described which can be used to analyze FORTRAN programs. The system includes a sophisticated command language that allows the user to selectively apply symbolic evaluation techniques to different program paths and subpaths. The command language allows the user to carry out different levels of symbolic testing of a program and to construct systems of predicates that can be used to automate the generation of numeric test data. Experiments with the system which illustrate its advantages and limitations are included. DISSECT can be used to carry out a systematic, documented reliability analysis of a program. The paper concludes with a discussion of the potential use of systems like DISSECT as the basic software certification tool in the software development process

    Error Models and Software Certification

    No full text
    Abstract-An error-based approach to certification is described. A classical theory of error is reviewed and a software interpretation of the theory is developed. The interpretation suggests a strategy for testing and analysis. The strategy was evaluated by comparing its potential effectiveness with that of certification standards based on individual methods
    corecore